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Preface 
It is a matter of pleasure for us to put forth the book titled, Multi-Criteria Decision 
Models in Software Reliability: Methods and Applications. In the present era, soft-
ware reliability plays a vital role in solving different kinds of problems and provid-
ing promising solutions in digital world. Because of the increase in digitalisation in 
today’s lifestyle and each and every service to make the life easier, good software 
interfaces are required. Due to the increase in the usability and dependency on soft-
ware, one important feature matters a lot, that is software reliability. The success of 
incorporation of the heavy software in the system works only with reliability feature. 
Such reliability depends upon different criteria and the deployed environment. It 
does not always relate to one or two factors, but it depends upon various factors such 
as physical or virtual. 

This book explores various factors and criteria within different chapters related 
to reliability and decision-making steps. These aspects make decision-making 
approaches more powerful, reliable and effcient. The above-mentioned charac-
teristics make the software reliability approaches more suitable and competent for 
decision-making systems. Nowadays, machine learning is incorporated in each and 
every feld of engineering to make the automated system for better decision-making 
solutions. This kind of system provides the effcient decision in less time. Medical 
science and engineering have been using various medical systems such as medical 
imaging devices, medical testing devices and medical information systems. In order 
to analyse such big data effciency, image processing, signal processing and data 
mining play important roles for computer-aided diagnosis and monitoring. 

Decision-making in the medical feld is a very important part because it is directly 
related to human life, so monitoring and diagnosis software should be reliable enough 
to provide the correct reports. This book will enable the reader to appreciate the 
applications of multi-criteria decision models in software reliability and their differ-
ent methods used in various felds according the feld criteria. 

CHAPTER 1 

This chapter focuses on building an item-item recommender system using collabora-
tive fltering. The proposed model uses the well-known MovieLens dataset and also 
uses the concept of Bayesian average for evaluating movie popularity. In order to 
deal with the problem of sparsity, our proposed model builds compressed sparse row 
(CSR) matrix. This chapter uses machine learning approach using K-nearest neigh-
bours for recommending movies based on similarity. 

CHAPTER 2 

This chapter focuses on the examination of relevant literature and provides a concep-
tual framework that explains the role of machine learning and profound learning in 
the development of intelligent (artifcial) beings. 



viii Preface 

CHAPTER 3 

This chapter reviews the various classifcations used to predict software defects using 
software measurements in the literature. In this chapter, a detailed analysis of appli-
cation of data mining and machine learning approaches used for software quality, 
defect and quality analysis is presented. 

CHAPTER 4 

This chapter analyses the types of ambiguities that arise due to poor management of 
requirement engineering and how it affects software quality and customer satisfac-
tion. Moreover, it discusses the challenges an enterprise faces when, in prototype 
model, new feature are added continuously based on business requirements. 

CHAPTER 5 

This chapter describes the integration of multi-criteria decision making (MCDM)-
based fuzzy analytic hierarchy process (FAHP) and fuzzy Technique for Order 
Preference by Similarity to Ideal Solution (FTOPSIS) methods that are applied for 
the formation or selection of best group of programmers. 

CHAPTER 6 

This chapter intends to use one of the unknown yet powerful machine learning algo-
rithms, MCDM, to foresee the presence of heart disease in a person more accurately 
in order to save more lives by detecting and treating the patient before any major 
issue. 

CHAPTER 7 

In this chapter, the classifcation of software reliability models (SRMs) is studied on 
the basis of effective and effcient quality of SR models and obtains software faults 
with categorisation of vast variety of available software. 

CHAPTER 8 

This chapter provides a detailed study of different types of reliability models, which 
are responsible for the software reliability measurements. As every model has differ-
ent criteria, so no single model is perfect. It also provides information about software 
quality improvement. 

CHAPTER 9 

This chapter shows the comparison of different techniques to resolve vulnerabilities 
using different multi-criteria decision analysis (MCDA) methods. The MCDM saves 
and sorts the list of criteria affecting the environments. 
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CHAPTER 10 

This chapter describes and gives possible approaches for the safety assessment of 
AI systems. The AI system to integrate safety level needs and used for probabilistic 
failure behaviour for the dangerous part of the random budget for failure relevant in 
AI system. 

CHAPTER 11 

In this chapter, a step-by-step model for the FDP and FCP is proposed based on the 
ANN. The test initiative is taken into account as it has a strong impact on the error 
detection and correction process. 

CHAPTER 12 

In this chapter, various MCDM methodologies are studied with different perfor-
mance parameters along with the new methodology FMCDM and its applications. 
The new methodology is compared with the traditional methodologies. 

CHAPTER 13 

In this chapter, to extend the capabilities of large-scale application and fx any faults 
detected during operation, software systems with optimisation help in selecting new 
techniques constantly for improving the next release sequence of plan, which is a 
huge challenge for frms developing or managing such vast and sophisticated systems. 

CHAPTER 14 

In this chapter, modelling data are evaluated with a deep neural network algorithm 
that is created expressly to predict the amount of faults, and the fault-free software 
system is fnalised. 

CHAPTER 15 

This chapter reviews the recent technologies and uses deep learning mechanisms to 
detect vulnerabilities. It shows how they apply state-to-state neural techniques that are 
helpful for capturing probable vulnerable codes and patterns. It also provides complete 
reviews of the visions, concepts and ideas of the game modifers for their feld of interest. 

We sincerely thank Ms. Erin Harris, Senior Editorial Assistant, CRC Press/Taylor 
& Francis Group, for giving us an opportunity to convene this book in her esteemed 
publishing house and for their kind cooperation in completion of this book, and Dr. 
Vijender Kr. Solanki, Sandhya Makkar and Shivani Agarwal, Series Editors in IT, 
Management and Operation Research. We thank our esteemed authors for having 
shown confdence in this book and considering it as a platform to showcase and share 
their original research work. We would also wish to thank the authors whose papers 
were not published in this book, probably because of minor shortcomings. 



https://taylorandfrancis.com


xi 

  

 

  
 
 
 
 

  
 
 

 
 
 
 
 

  
 

Editors 

Dr. Ashish Mishra is currently working as a Professor 
in the Department of Computer Science and Engineering, 
Gyan Ganga Institute of Technology and Sciences, Jabalpur 
[M.P], India. 

He is a qualifed individual with around 19 years of 
expertise in teaching and R&D with specialisation in 
Computer Science Engineering. He completed B.E., M.Tech. 
and MBA. He received his Ph.D. degree from AISECT 
University, Bhopal, India. He has been a part of various 
seminars, webinars, paper presentations, research paper 
reviews and conferences as co-convener, Member of 

Organizing Committee, Member of Advisory Committee and Member of Technical 
Committee, and he has contributed to organising INSPIRE Science Internship Camp. 
He is a Senior Member of IEEE, Life Member of CSI and Secretary CSI Jabalpur 
Chapter. He has published many research papers in reputed journals and confer-
ences. He also has papers in Springer and IEEE conferences. He is also a reviewer 
and Session Chair, Keynote Speaker of IEEE, Springer international conferences, 
CSNT-2015, CICN-2016, CICN2017, INDIACom-2019, ICICC-CONF 2019, ICICC-
CONF 2020 and ICICC-CONF 2021. His research interests include IoT, data mining, 
cloud computing, image processing and knowledge-based systems. He published 30 
patents in Intellectual Property India. He has published 8 books in the area of data 
mining, image processing and artifcial intelligence. 

Dr. Nguyen Thi Dieu Linh is currently working as a 
Dy. Head of Science and Technology Department, Hanoi 
University of Industry, Vietnam (HaUI). She received her 
Ph.D. in Information and Communication Engineering from 
Harbin Institute of Technology, Harbin, China. She has 
more than 19years of academic experience in electronics, 
IoT, telecommunication, big data and artifcial intelligence. 
She has published more than 30 research articles in national 
and international journals, books and conference proceed-
ings. She is a reviewer for Information Technology Journal, 

Mobile Networks and Applications Journal and some international conferences. Now, 
she is an editor for some books such as Artifcial Intelligence Trends for Data Analytics 
Using Machine Learning and Deep Learning Approaches; Distributed Artifcial 
Intelligence: A Modern Approach published by Taylor & Francis Group, LLC; and 
Data Science and Medical Informatics in Healthcare Technologies published by 
Springer. Otherwise, she is an editor of International Journal of Hyperconnectivity 
and the Internet of Things (IJHIoT) IGI-Global, the USA. 



xii Editors 

 

 

   

Dr. Manish Bhardwaj is currently working as a Research 
Assistant Professor in the Department of Computer Science 
and Engineering, KIET Group of Institutions, Muradnagar, 
Ghaziabad, India. He is a qualifed individual with around 
11years of expertise in teaching and R&D with specialisa-
tion in Computer Science Engineering. He received his 
Ph.D. degree from Dr. Abdul Kalam Technical University 
(AKTU), Lucknow, India. He completed M.Tech. (Computer 
Science & Engineering) from SRM University, Chennai 
(Gold Medalist, received award from former central health 

minister Mr. Gulam Nabi Azad). He is contributing to the scientifc community by 
his enormous academics and research works in the areas of computer science, simu-
lations, mobile ad hoc network protocols and wireless sensor networks. He has pub-
lished nearly 60 Research Papers in various international journals/conferences. He 
has also taken part in nearly 150 international conferences and journals as General 
Chair, International Scientifc Committee Members/Reviewer (SCOPUS index jour-
nals and conferences) and Editorial Board Member/Reviewer in reputed journals 
such as IEEE and Springer. He has contributed 1 book as an Editor and 8 book chap-
ters in various renowned publications such as CRC Press and IGI Global. He has 
nearly 14 patents (ten national + four international). 

Dr. Carla M.A. Pinto is a Coordinating Professor in the 
School of Engineering at Polytechnic of Porto, Portugal. 
Her main research topic is epidemiology, in particular 
Mathematical Epidemiology. She is interested in math-
ematical challenges and their role in providing advice on 
public health policies. Mrs. Pinto is trained in Nonlinear 
Dynamics, Bifurcation Theory. Previous research included 
the analysis of Central Pattern Generators for Animal and 
Robot Locomotion, coupled cell networks, and neuron-like 

equations (Hodgkin-Huxley equations, Fitz-Hugh Nagumo, and Morris-Lecar). She 
is an Associate Editor of international journals with a high impact factor. She is the 
Guest Editor of several books. She has published more than 100 articles. Her h-index 
is 20 and she has over 1700 citations. 



xiii

Contributors
Aakriti
Bharati Vidyapeeth’s College of 

Engineering
New Delhi, India

D. Akila
Department of Computer Applications
Saveetha College of Liberal Arts and 

Sciences 
SIMATS deemed to be University
Chennai, India

Isha Bansal
Bharati Vidyapeeth’s College of 

Engineering
New Delhi, India

L. Bhagyalakshmi
Rajalakshmi Engineering College
Chennai, India

S. K. Bharadwaj
Madhav Institute of Technology & 

Science
Gwalior, India

Manish Bhardwaj
KIET Group of Institutions, Delhi-NCR
Ghaziabad, India

Korhan Cengiz
University of Fujairah
Fujairah, UAE

Deviprtiya
Vels Institute of Science, Technology 

and Advanced Studies
Chennai, India

V.R. Elangovan
Agurchand Manmull Jain College
Chennai, India

Kartik Gupta
Bharati Vidyapeeth’s College of 

Engineering
New Delhi, India

Sardar M. N. Islam
ISILC
Victoria University
Melbourne, Australia

Rachna Jain
Bhagwan Parshuram Institute of 

Technology
Delhi, India

S. Jeyalaksshmi
Vels Institute of Science, Technology 

and Advanced Studies
Chennai, India

Padmaja Joshi
CDAC
Mumbai, India

Rachana Kamble
Technocrats Institute of Technology
Bhopal, India

Aarti M. Karande
Sardar Patel Institute of Technology
Mumbai, India

Devansh Kashyap
Kalinga Institute of Industrial 

Technology
Bhubaneswar, India



xiv Contributors

Shreyansh Keshri
Kalinga School of Management
Bhubaneswar, Odisha, India

Hassan Raza Mahmood
FAST NUCES Chiniot-Faisalabad 

Campus
Chiniot-Faisalabad, Pakistan

Ashish Mishra
Gyan Ganga Institute of Technology 

and Sciences
Jabalpur, India

D. K. Mishra
Madhav Institute of Technology & 

Science
Gwalior, India

Jyoti Mishra
Gyan Ganga Institute of Technology 

and Sciences
Jabalpur, India

Nishchol Mishra
RGPV
Bhopal, India

Neelu Nihalani
RGPV
Bhopal, India

Samad Noeiaghdam
Irkutsk National Research Technical 

University
Irkutsk, Russia
and
South Ural State University
Chelyabinsk, Russia

D. Padmapriya
Vels Institute of Science, Technology 

and Advanced Studies
Chennai, India

Vishal Paranjape
RGPV
Bhopal, India

Piramu Prithika
Vels Institute of Science, Technology 

and Advanced Studies
Chennai, India

Prashant Richhariya
Technocrats Group of Institutions
Bhopal, India

Harish K. Shakya
Amity University
Gwalior, India

Aditi Sharma
Parul University
Vadodara, Gujarat, India

Saurabh Sharma
Amity University
Gwalior, India

Vineet Sharma
KIET Group of Institutions, Delhi-NCR
Ghaziabad, India

Himanshu Shekhar
Hindustan Institute of Technology and 

Science
Chennai, India

Vikas Shinde
Madhav Institute of Technology & 

Science
Gwalior, India

Rajeev Shrivastava
Princeton Institute of Engineering & 

Technology for Women
Hyderabad, India



xvContributors

Ragini Shukla
Dr. C. V. Raman University
Chhattisgarh, India

Shweta Singh
KIET Group of Institutions, Delhi-NCR
Ghaziabad, India

Shubham Singh
Galgotias University
Greater Noida, India

Anurag Sinha
Department of Computer Science
IGNOU
New Delhi, India

Anita Soni
IES University
Bhopal, India

Sanjay Kumar Suman
St. Martin’s Engineering College
Hyderabad, India

Kshitij Tandon
Jaypee University of Engineering and 

Technology
Guna, India

Narina Thakur
Bhagwan Parshuram Institute of 

Technology
Delhi, India



https://taylorandfrancis.com


1 

 
 

  
  

  
  

 
  
  

  
   
  

  
  
 

  
  

   
   

  
  

 
  

 

1 Enhancing Software 
Reliability by Evaluating 
Prediction Accuracy of 
CBF Algorithm Using 
Machine Learning 

Vishal Paranjape, Neelu Nihalani 
and Nishchol Mishra 
RGPV 

CONTENTS 

1.1 Introduction ......................................................................................................2 
1.2 Background Details & Related Work ...............................................................2 

1.2.1 Software Reliability..............................................................................2 
1.2.2 Criterion to Measure Performance of SGRM.......................................2 

1.3 Machine Learning: A Brief Overview..............................................................3 
1.3.1 Supervised Learning.............................................................................3 
1.3.2 Unsupervised Learning ........................................................................4 

1.3.2.1 Categorisation of Unsupervised Machine Learning..............5 
1.3.3 Semi-Supervised Learning...................................................................6 
1.3.4 Reinforcement Learning.......................................................................6 

1.3.4.1 Algorithms Used in Machine Learning.................................7 
1.4 Related Work .................................................................................................. 11 
1.5 Machine Learning Techniques & Methodology Used for Reliability 

Assessment...................................................................................................... 12 
1.5.1 Data Set............................................................................................... 13 
1.5.2 Collaborative Filtering Technique ...................................................... 13 

1.6 Experimental Set-up ....................................................................................... 14 
1.6.1 Test Data Set – QUERY vs PROBE ................................................... 18 

1.7 Results Evaluation .......................................................................................... 21 
1.7.1 Evaluate the Recommendation from Both Algorithms – RMSE 

and MAE ............................................................................................ 21 
1.8 Conclusions.....................................................................................................22 
References................................................................................................................23 

DOI: 10.1201/9780367816414-1 

https://doi.org/10.1201/9780367816414-1


  

 
 

 

  

   

 

    

 

  
  

    

     

2 Multi-Criteria Decision Models in Software Reliability 

1.1 INTRODUCTION 

A vital factor affecting system reliability is software reliability. Alternatively, it is 
described as the likelihood of software being successfully executed for a particular 
instant of time. Several techniques were proposed for determining the software’s 
reliability. A particular task is fulflled by a software system in a particular environ-
ment for predefned number of input cases is termed as software reliability. A very 
important connection to software reliability is software quality, comprising function-
ality, usability, performance, etc. Software quality hinders the growth of software 
reliability. It is diffcult to reach certain level of reliability with any system with a 
complexity. The machine learning approach guarantees to predict accurate solution 
to a given problem and therefore is a promising approach for ensuring software reli-
ability. Today, machine learning approaches are used in a number of applications; 
one of the most used approaches is recommender systems where a user is being 
recommended items on the basis of his/her purchasing history of buying habits. A 
number of applications such as e-commerce, movies recommendation and social net-
working such as Facebook make use of recommender systems. 

The entire chapter is divided into the following sections: Section 1.2 deals with 
the background details. Section 1.3 presents the ML techniques and methodology 
used for reliability assessment in our proposed work. The experimental set-up is dis-
cussed in Section 1.4. Results are represented in Section 1.5. Section 1.6 concludes 
the chapter. 

1.2 BACKGROUND DETAILS & RELATED WORK 

1.2.1 SOFTWARE RELIABILITY 

An important feature for enhancing software quality is ensuring software reliability 
dealing with the bugs present in the system [1]. Fault in code is the major reason for 
failure in the system. Analytical models are used to measure the reliability of soft-
ware termed as software reliability growth models (SRGMs) [2,3]. 

1.2.2 CRITERION TO MEASURE PERFORMANCE OF SGRM 

Past research presented several techniques to acquire software reliability, but to 
access it and estimate mean time to failure (MTTF), we use a mathematical model 
called SRGM. There are two categories of SGRMs on the basis of nature of process: 

1. Times between failures models 
2. Fault count models. 

Some well-known SRGMs are Goel-Okumoto, Musa-Okumoto, Jelinski-Moranda, 
etc. For deciding reliability level and to stop testing, we use these models [4]. 

For evaluating the performance of various models, we use several criteria such as 
root-mean-square error (RMSE), mean absolute error (MAE), average error (AE), 



   

 

   

  
   
  
  

   

   

  
   
   

  

 
 

 

   

    

  

3 Enhancing Software Reliability by CBF Algorithm Using ML 

and normalised root-mean-square error (NRMSE). Our proposed model uses only 
RMSE and MAE approach for evaluating the performance. The mathematical equa-
tions for the above-mentioned techniques are given below. 

2˜N

(x − x̂i )i 

RMSE = i=1 (1.1) 
N 

where 
i= Variable 
N= Number of non-missing data points 
xi = Actual rating 
x̂i = Predicted rating. 

˜N 

a f( p fi ( ) − i ( ))
i=1MAE = (1.2) 

N 

k˜ ( p f( )  − a f( )) 
2 

i i 
i=1NRMSE = k (1.3) 

˜ p f( )2 
i 

i=1 

where 
k = Number of failures 
ai( f) = Number of actual failures 
pi( f) = Number of predicted failures. 

1.3 MACHINE LEARNING: A BRIEF OVERVIEW 

A technique that is capable of learning from training data and predicting results is 
called machine learning. Broadly, we classify machine learning into four categories, 
which are discussed in the next section. Further, subcategorisation of the different 
types of ML is depicted in Figure 1.1 below. Under uncertainty, this technique plays 
a vital role in prediction and decision-making. On the basis of type of data and ques-
tionnaire being asked, different taxonomies of ML are available, which classifes 
machine learning. The classifcation of ML is given in Figure 1.1. 

1.3.1 SUPERVISED LEARNING 

In this method, we use labelled data with the help of which we train our model. In 
other words, we can say the learning that takes place in the presence of a supervisor 
is called supervised learning. The major part of this type of learning includes map-
ping function, which maps I/P variable (X) with the O/P variable (Y). 

Y = ( )f X  
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FIGURE 1.1 Categories of machine learning. 

Supervision for model training is the main step involved in supervised learning. It 
can be simulated with the fact that proper learning takes place in the presence of a 
teacher or mentor in school. Two problems come in this category: classifcation and 
regression. 

1. Classifcation Models: The problems in which output variables can be clas-
sifed as “Yes” or “No”, or “Pass” or “Fail” are categorised as classifcation 
models. In order to predict data category, we use these models. These can be 
binary classifcation or multiclass classifcation models. Some well-known 
examples for classifcation models that are deployed are spam fltering in 
emails, churn prediction, etc. 

2. Regression Models: Whenever the output is predicted based on the previ-
ous data, we use the concept of regression models, for example house rent 
prediction. Linear, polynomial, ridge and logistic regression are some of the 
more familiar regression algorithms. 

Regression problems are all about predicting f% for a quantitative response, such 
as blood pressure and temperature. For prediction, many ML algorithms are avail-
able, ranging from simple linear regression (LR) [5] and polynomial response surface 
(PRS) [6] to more complex support vector regression (SVR) [7], decision tree regres-
sion (DTR) [8], and random forest regression (RFR) [9]. By accurately quantifying 
uncertainty in regression problems, we use some machine learning (ML) models 
[10,11]. DNNs are more reliable than conventional ML equivalents and are effective 
in controlling the overftting issue [12] (Figure 1.2). 

1.3.2 UNSUPERVISED LEARNING 

The learning that takes place in the absence of a supervisor is called unsupervised 
learning; in this type of learning, we do not have labelled data. This technique 
does not provide any training data. A large volume of data is fed to the machine for 
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FIGURE 1.2 Classifcation and regression model. 

FIGURE 1.3 Unsupervised learning. 

developing model and patterns, and on the basis of this learning, the model is fed 
with the testing data so as to provide effcient predictions. In unsupervised learn-
ing, there are no defned outcomes; moreover, it determines whatever different or 
interesting patterns exist in a given data set. Recommender system is basically based 
on the concept of unsupervised learning where we use several algorithms such as 
k-means clustering and k-nearest neighbours (Figure 1.3). 

1.3.2.1 Categorisation of Unsupervised Machine Learning 
1. Of all the learning methods, clustering is an important unsupervised learn-

ing method. Organising unlabelled data into similar groups is the main task 
of clustering technique. Therefore, collection of similar data items is called 
clustering. Grouping of similar data points into cluster and fnding similar 
data points is the main goal of clustering. 

2. The technique of identifcation of rare items or events differing from major-
ity of data is called anomaly detection. Since anomalies or outliers are sus-
picious, generally we look for them. Bank fraud and medical error detection 
generally uses anomaly detection techniques. 
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1.3.3 SEMI-SUPERVISED LEARNING 

A technique comprising of mix up of labelled data and unlabelled data during the 
phase of training is called semi-supervised learning. In this technique, frst, the 
model is trained with the training data and then it is fed with the testing data to get 
the predictions. 

To produce improvement and accuracy in learning, we use unlabelled data. A 
skilled human agent is required for acquiring labelled data for a learning problem or 
a physical experiment. It is relatively inexpensive to acquire unlabelled data. 

A text document classifer is an example of this type of learning. It is so because 
it is not time effcient to have a person read the entire document. So, with the help 
of labelled text it becomes easy to classify labelled text with unlabelled (Figure 1.4). 

1.3.4 REINFORCEMENT LEARNING 

An interactive environment using hit and trial is learning which comes under the 
category of reinforcement learning (RL) and is an ML technique. Mapping between 
input and output is provided by both supervised and reinforcement learning where 
we give feedback to the agent. These feedbacks are of two types: Whenever there is a 

FIGURE 1.4 Semi-supervised learning. 
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FIGURE 1.5 Reinforcement learning. 

positive reward, then that type of performance is repeated, while if there is negative 
impact of a work, then it is avoided (Figure 1.5). 

1.3.4.1 Algorithms Used in Machine Learning 
Some commonly used machine learning algorithms are discussed below: 

1. Linear Regression 
This technique estimates the exact values, for example total sales predic-

tion and cost of houses, on the basis of continuous variables. The best line 
is ftted to depict the relationship between two variables. The line is also 
called regression line shown by the linear equation 

Z = m * X + c 

where Z is dependent on the values of X and c, and m is the slope. 
For example, if we give an assignment to a student studying in ffth class 

to separate people according to their weight, then he on the basis of his 
skills will arrange people and separate them on the basis of their height and 
weight to classify them just by visualisation. This is a real-life application 
seen for linear regression. Figure 1.6 given below depicts a simple linear 
regression. 

2. Logistic Regression 
As many a time we get confused by the name regression, whereas in 

real, it is a classifcation algorithm. Discrete values comprising values such 
as 0/1, yes/no and true/false are estimated by logistic regression. The prob-
ability of occurrence of event is predicted by ftting data. As this method 
is basically based on probability, its value generally lies between 0 and 1 
(Figure 1.7). 

3. Decision Tree 
A well-known algorithm used for classifcation problems is decision tree. 

Here, the entire population is split into two or more homogenous sets. In 
the diagram depicted below, we can see how a decision tree works. For 



  

  

8 Multi-Criteria Decision Models in Software Reliability 

FIGURE 1.6 Linear regression. 

FIGURE 1.7 Logistic regression. 
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FIGURE 1.8 Decision tree. 

example, if an employee is offered a salary between $50000 and $8000 and 
if his offce is near to his home and if offce provides cab facility, then the 
probability of that employee for taking offer letter is more, whereas if the 
salary is not in that range, he would have not accepted the offer; moreover, 
if his offce was also far from his home, he would have declined the offer 
and if cab was not provided, still he would have declined offer (Figure 1.8). 

4. SVM (Support Vector Machine) 
It divides two items on the basis of their best line or decision bound-

ary called hyperplane. In n-dimensional space, there can be several lines/ 
decision boundaries to separate the groups, but we need to fnd the best 
decision boundary to help defne the data points. The hyperplane of SVM 
refers to the best boundary (Figure 1.9). 

5. Naive Bayes 
A method of classifcation based on Bayes’ theorem is called naive Bayes. 

This technique assumes that a particular feature in a class is not related to 
another. For calculating posterior probability, we use Bayes’ theorem. It is 
given below in the form of equation: 

P n  m P m ( | ) ( )
T m n) =(

P n( )  

Here, P(n|m) = Posterior probability 
P(m) = Prior probability of class 
P(n|m) = Likelihood which is probability of predictor 
P(n) = Prior probability of predictor. 
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FIGURE 1.9 Support vector machine. 

FIGURE 1.10 k-Nearest neighbours. 

6. kNN (k-Nearest Neighbours) 
It is a classifcation problem using classifcation and regression problems. 

k-Nearest neighbours algorithm involves fnding the distance from the data 
points, and for that, we use Euclidean, Manhattan and Hamming distances. 
For the sake of convenience, we take an odd value of k such as 3 or 5 to 
distinguish between two different types of items (Figure 1.10). 

7. k-Means 
For solving clustering problem, we use this type of unsupervised algo-

rithm. With the help of certain number of clusters, we can classify the data 
set using this technique assuming k number of clusters; therefore, its name 
became k-means algorithm. Figure 1.11 below depicts three prominent clus-
ters where each cluster is shown by same coloured data points. 
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FIGURE 1.11 k-Means clustering. 

FIGURE 1.12 Random forest. 

8. Random Forest 
When we talk about ensembling, then random forest is the most widely 

used algorithm in supervised machine learning. A collection of decision 
trees is called a random forest. Classifcation is given in tree for classifying 
new object, and we say tree “votes” for that class. These have much more 
accuracy with respect to decision trees, but lower than gradient boosted 
trees (Figure 1.12). 

1.4 RELATED WORK 

There are several works done by several researchers in the feld of collaborative 
fltering-based recommender system. Most of the work based on movie recommendation 
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is based on the concept of personalisation, which suggests movies to users on the basis 
of their interest and likings. 

A k-means clustering-based hybrid recommender system was proposed by Katarya 
Rahul [13] and was applied to the MovieLens data set with optimisation technique of 
bio-inspired artifcial bee colony. 

Ponnam et al. [14] suggested a collective fltering technique based on an item that 
examines the user’s item rating matrix and determines the relationship between dif-
ferent objects in order to calculate the user’s recommendations. 

A content-based movie recommender framework was proposed by Bagher 
Rahimpour Cami et al. [15] capturing user choices in temporary mode in user mod-
elling and predicting favourite movies. 

Reddy et  al. [16] used a genre correlation technique by using the method of 
content-based fltering. 

A weighted hybridisation-based hybrid recommender system was proposed by 
Hong-Quan Do et  al. [17], which didn’t use fxed weight and aimed to provide a 
simple way to dynamically weight the combination of Collaborative Filtering and 
Content Based Filtering. 

An effective GCN (graph convolutional network) algorithm was suggested by Rex 
Ying et al. [18]. The developed algorithm was effective for data that combine graph 
convolutions and effcient random walks to produce embeddings incorporations. 

A method for tweets recommendation was proposed by Arisara Pornwattanavichai 
et al. [19], which was based on hybrid recommendation with LDA for unsupervised 
topic modelling and GMF for supervised learning. 

For gaining feedback on movies and movie genres in Rohan Nayak et  al. [20] 
hybrid’s framework, and based on their responses, the user will be classifed and 
given a collection of recommendations. 

Collaborative fltering, as previously discussed, is a well-known technique for 
making powerful recommendations based on ratings results. In order to enhance 
the technique’s ability and achieve results by k-means clustering algorithm in movie 
recommendation framework, we continue our research. 

1.5 MACHINE LEARNING TECHNIQUES & METHODOLOGY 
USED FOR RELIABILITY ASSESSMENT 

The entire machine learning process is divided into several tasks. The frst and fore-
most task is data set identifcation, and we have chosen MovieLens data set for our 
experimentation. From the well-known GroupLens Research Project at the University 
of Minnesota, we took MovieLens data [21]. Our goal with using this data set is to 
generate recommendations of movies to users on the basis of their interest and lik-
ings. This data set comprises 264505 ratings (1–5 scale) from 862 users on 2500 
movies, and age, occupation, zip code, gender, etc., act as important demographic 
features taken from user data set. Next, data preprocessing is done to remove any sort 
of noise from the data set. 

For our experimentation work, we are splitting the data set into two parts by 
80:20, where the training part (80%) is used to train our model and then 20% is used 
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FIGURE 1.13 Machine learning process. 

TABLE 1.1 
Details of MovieLens Data set 

Data set Name Number of Unique Data 

Movies.CSV 2500 Movies 

Ratings.CSV 264505 Ratings 

Users.CSV 862 Users 

for testing. Finally, we also evaluate our model by calculating RMSE and MAE of 
our proposed model (Figure 1.13). 

1.5.1 DATA SET 

We have taken MovieLens data set for our experimental work. This data set has been 
taken from (http://www.movieLens.org) for evaluating our proposed recommender 
system. Our experiments are performed on Google Colab where Google provides 
with the support of hardware on cloud to do our machine learning task. Here ratings 
by users are given on a scale from 1 to 5. Our data set is comprised of those users 
who have given at least 20 ratings. Our data set comprises 1,000,209 ratings given by 
users for different movies (Table 1.1). 

1.5.2 COLLABORATIVE FILTERING TECHNIQUE 

This approach is based on a user’s suggestion of an object based on reactions from 
similar users. This works by selecting a smaller collection of users from a wide 

http://www.movieLens.org
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FIGURE 1.14 Collaborative fltering technique. 

community of individuals with tastes close to a single user. In this, the main recom-
mendation principle is that other users offer ratings to a specifc object (Figure 1.14). 

Measuring user similarity in collaborative fltering technique: 

i. Pearson Correlation: 

˝P P ( . )(  b p. − rbˆ ra p r− a r  )
sin ,a b( ) = 

2 2 
(1.4) 

˝ p Pˆ ( . − a) ˆ (rb p. − rb)ra p r  ˝ p P  

where a and b are users, while ra.p is rating and P is set of items read by 
both users. 

ii. Cosine Similarity Measure: It is measured by the angle between the 
vectors 

˜ ˜
˜ ˜  p q,sin ,( p q) = (1.5) ˜ ˜

*p q  

U represents users having rated both items p and q. 

1.6 EXPERIMENTAL SET-UP 

The idea behind recommending movies to users based on item-item collaborative 
fltering comprises the steps discussed below: 
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Step 1. Create an adjusted rating for all movies by users. This adjusted rating 
is calculated by subtracting the movie’s average rating from all users (for 
movie j) from each rating for that movie. 

Step 2. Calculate similarity scores between all movies based on their adjusted 
movie ratings from each user (use cosine similarity). For recommendation 
purpose, we will only consider top similar movies to a target movie (top n 
nearest neighbours). 

Step 3. For recommending a movie to a target user, we will score each movie, 
using the top n nearest neighbours for that movie. The score is basically a 
weighted rating based on the target user’s rating for all movies they have 
rated and the similarity scores as the weight. Once we score all the movies, 
pick the top scoring movies from this scoring as recommendations. 

The adjusted rating is nothing but the average rating for the movie from all users (uj) 
subtracted from all of the individual movie ratings (ru, j): 

= , − ujRu, j ru j  

This adjusted rating is now comparable across all movies. This adjusted score basi-
cally compares the variation of ratings by a user from the movie’s mean rating 
(Figures 1.15 and 1.16). 

Now we create similarity score for each movie with every other movie; for this, 
we use the concept of cosine similarity (Table 1.2). 

For creating recommendation to the target user, we fnd a score for each movie 
in the data set and movies with the highest score will be recommended to the user. 

Steps involved in scoring are as follows: 

1. Get the list of movies the target user has rated (seen movies). These seen 
movies will be used to create the score for all other movies (unseen movies) 
based on how the unseen movies are similar to these seen movies. These 

FIGURE 1.15 Potting average ratings across all users. 
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FIGURE 1.16 Potting average-adjusted ratings across all users. 

seen movies tell us about the taste of the target user. If they have rated some 
movies high, we will try to fnd similar unseen movies to these high rated 
seen movies and recommend them to the user and vice versa for low rated 
movies. 

2. For all the unseen movies in the data set, get the similarity scores between 
them and the seen movies. Here we can use all the seen movies or the top N 
neighbours out of the seen movies to get the similarity scores. We will use 
N= 30 for our calculation. In case the number of seen movies is less than 30, 
we will use all the seen movies. 

3. Using the similarity scores between each of the unseen movies and the seen 
movies, calculate a score for the unseen movies. The formula for the score 
is given below. 

4. Once we get the score, sort the unseen movies based on the score and rec-
ommend the top n movies for the user. 

We use the following formula to calculate score: 

˜ cos( , ).(i j  ruj − mj ) 
Su i, = mu + j 

˜ cos( , )i j  
j 

where 
S is the score for the unseen movie i 
mu is the average rating for all seen movies by the target user U 
cos(i, j) is the cosine similarity (based on adjusted rating) between the unseen 

movie i and the seen movie j 
ruj is the rating of the seen movie j by the target user U 
mj is the average rating from all users for the seen movie j 
ruj − mj is the same as the adjusted rating calculated above. 
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TABLE 1.3 
Recommendations for User 76630 

MovieId Title Genres Score 

0 2906 Random Hearts (1999) Drama|Romance 3.086117 

1 1099 Christmas Carol, A (1938) Children|Drama|Fantasy 3.060448 

2 828 Adventures of Pinocchio, The (1996) Adventure|Children 3.040377 

3 611 Hellraiser, Bloodline (1996) Action|Horror|Sci-Fi 3.018605 

4 1015 Homeward Bound: The Incredible Adventure|Children|Drama 3.005596 
Journey (1993) 

5 334 Vanya on 42nd Street (1994) Drama 2.985227 

6 3684 Fabulous Baker Boys, The (1989) Drama|Romance 2.978881 

7 1014 Pollyanna (1960) Children|Comedy|Drama 2.976269 

8 1218 Killer, The (Die xue shuang xiong) Action|Crime|Drama|Thriller 2.974656 
(1989) 

9 2859 Stop Making Sense (1984) Documentary|Musical 2.970456 

TABLE 1.4 
Splitting Data set into Training and Testing 

Number of Users, Ratings and Movies Training Data Testing Data 

Number of unique users in RATINGS data 681 181 

Number of ratings in RATINGS data 209235 55270 

Number of movies 2500 2496 

Both the test and training data sets show similar distribution for the number of 
users per movie and average rating per movie (Tables 1.3 and 1.4). This shows that 
the test and training data sets are not that different and should be good enough for our 
evaluation. There is difference in the distribution of the average movie rating per user 
in test and training data sets, but these should be OK as we will use adjusted movie 
ratings for our recommendations (Figures 1.17–1.20). 

1.6.1 TEST DATA SET – QUERY VS PROBE 

Even from the given test data set, while trying to get the prediction for one user, we 
will only keep some movie ratings away from the model (QUERY movies), while we 
will pass on the remaining movies from that user to the model to be used as history 
(PROBE movies). 

This division can be done randomly or on a temporal basis. We will do this based 
on time (temporal) – keep most recent ratings from a user as query and the older ones 
as probe. We can do this based on the timestamps available in the ratings data set. 
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FIGURE 1.17 Movies rated by user in training data set. 

FIGURE 1.18 Movies rated by user in testing data set. 

Algorithm 1. User-User Collaborative Filtering 

The complete algorithm for user-user CBF will be explained in the following 
defned function. The steps for this algorithm are the following: 

1. Create adjusted user movie rating. 
2. Create similarity score for each user with every other user. 
3. Create recommendation for the target user based on the similarity score. 
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FIGURE 1.19 Average movie rating in training data set. 

FIGURE 1.20 Average movie rating in testing data set. 

Algorithm 2: Item-Item Collaborative Filtering 

The steps for the item-item CBF will be as follows: 

1. Create adjusted rating for every movie. 
2. Get similarity scores between every movie. 
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3. Rank each movie for a given target user based on a score created using 
similarity scores between the movie and the top neighbours of the movies 
(which target user has rated). 

1.7 RESULTS EVALUATION 

1.7.1 EVALUATE THE RECOMMENDATION FROM BOTH 

ALGORITHMS – RMSE AND MAE 

In our test query ratings data set, we loop through all the users and get the recom-
mendation from both the algorithms. We will then use the predicted ratings for their 
movies and compare them with their actual rated movies to calculate the RMSE 
(root-mean-square error) and MAE (mean absolute error) metrics. The algorithm 
with the least RMSE or MAE will be considered better performing. 

The graph below depicts a comparison between item-item CBF and user-user CBF 
with the number of neighbours with respect to RMSE (Figure 1.21). 

The graph below depicts a comparison between item-item CBF and user-user CBF 
with the number of neighbours with respect to MAE (Figure 1.22). 

From the above graph, it’s pretty clear that the user-user algorithm gives much 
better prediction than the item-item algorithm. It also looks like that the neighbour-
hood size of ~20 is good enough in our case for user-user algorithm. 

We are not choosing the neighbourhood size of 5 as it basically gives out very less 
number of recommendations and is not good enough. 

The table below depicts the RMSE and MAE comparison table the two algo-
rithms item-item CBF and user-user CBF (Table 1.5). 

The graph given below depicts comparison between RMSE and MAE with respect 
to the two algorithms item-item CBF and user-user CBF (Figure 1.23). 

FIGURE 1.21 RMSE plot for algorithms. 
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FIGURE 1.22 MAE plot for algorithms. 

TABLE 1.5 
RMSE and MAE Comparison Table 

Algorithm NBR Error_sq MovieId Error_abs RMSE MAE 

0 Item-item CBF 5 489.039404 543 386.951160 0.949013 0.712617 

1 Item-item CBF 10 483.644746 543 380.510503 0.943764 0.700756 

2 Item-item CBF 15 483.149094 543 380.910301 0.943280 0.701492 

3 Item-item CBF 20 480.815570 543 378.782391 0.940999 0.697573 

4 Item-item CBF 25 482.042223 543 378.205743 0.942199 0.696511 

12 User-user CBF 5 81.272629 133 80.028456 0.781711 0.601718 

13 User-user CBF 10 188.447988 277 172.318323 0.824814 0.622088 

14 User-user CBF 15 235.440337 357 221.988758 0.812094 0.621817 

15 User-user CBF 20 274.206791 404 249.881260 0.823851 0.618518 

16 User-user CBF 25 340.749089 445 287.846705 0.875059 0.646847 

1.8 CONCLUSIONS 

In the present chapter, techniques for establishing software reliability using machine 
learning have been used. On the basis of our experimental results, it is revealed 
that machine learning approach proves to be a better approach for predicting accu-
rate software reliability. For analysing our model effciency, we use the concept of 
RMSE, NRMSE and MAE criteria. On the basis of the experiment conducted on 
the well-known MovieLens data set, the ML approach gives better results and it is 
revealed that our technique provides more accurate results. The results obtained from 
our experimentation work reveals that the ML-based approach decreases testing cost 
by estimating the reliability of software and is much more feasible. 
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RMSE Vs MAE Comparison Graph 
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FIGURE 1.23 RMSE and MAE comparison graph for item-item CBF and user-user CBF 
w.r.t NBR. 
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